Atlantic Richfield Company

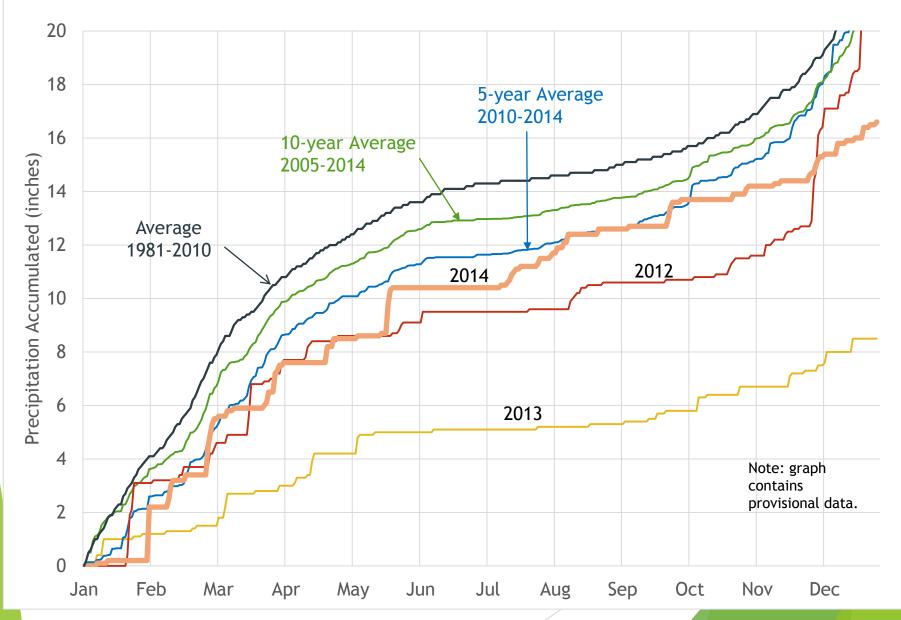
Treatment System Operation and Maintenance

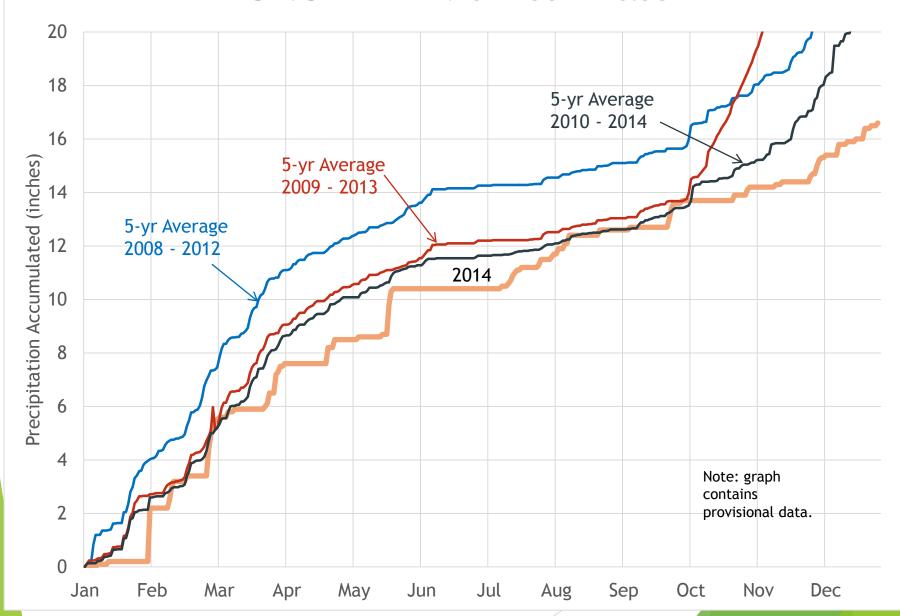
Technical Advisory Committee Meeting

Leviathan Mine Site January 20, 2015

Outline

- Current Treatment System History
- Spring Access and Operations Setup
- High Density Sludge (HDS) Treatment System
- Aspen Seep Bioreactor (ASB) Treatment System


Leviathan Mine Site


Current Treatment System History

- HDS
 - 2005-2006 HDS pilot system
 - ▶ 2007-2009 Pond 4 Lime Treatment System (LTS)
 - 2009-Present HDS Treatment Plant
- ASB
 - ► 2000-2002 Designed by scientists from UNR with input from U.S. EPA and Atlantic Richfield
 - ▶ 2002-2003 Construction of Bioreactor
 - 2004 Recirculation added
 - 2007-2008 Updates to Chemical Feed and Power Generation System

SNOTEL - Monitor Pass

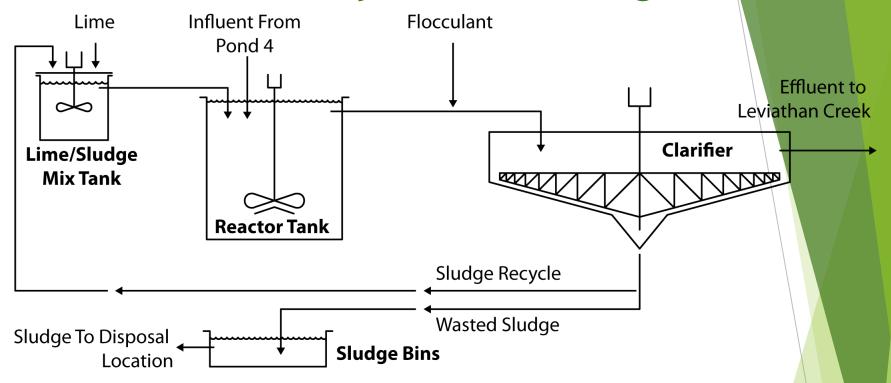
SNOTEL - Monitor Pass

Spring Access and Operations Setup

Provide safe access as soon as possible

- April 17, 2014
 - Accessed site, evaluated road conditions, and began Nevada Access Road maintenance
- April 18, 2014
 - Initiated site setup activities in the Pond 4 area including spring commissioning of the HDS Treatment System
- May 8, 2014
 - Began capture at Channel Underdrain (CUD) and Delta Seep (DS)

HDS Treatment System


HDS Treatment System - Background

HDS System Components

- Capture and Conveyance
 - 2 capture locations
 - Channel Underdrain (CUD)
 - Delta Seep (DS)
 - Pond 4 (Pre-treatment Water Storage)
 - Influent Pumps

HDS Treatment System - Background

HDS Basics

- Increase pH with lime and precipitate metals as hydroxides
- HDS Advantages
 - low sludge volumes
 - better lime efficiency
 - Increased settling

HDS Treatment System - Highlights

- Captured and treated CUD and DS from late May through late October
- Successfully treated approximately 3.78 million gallons of acid drainage
- All discharge to Leviathan Creek met discharge criteria

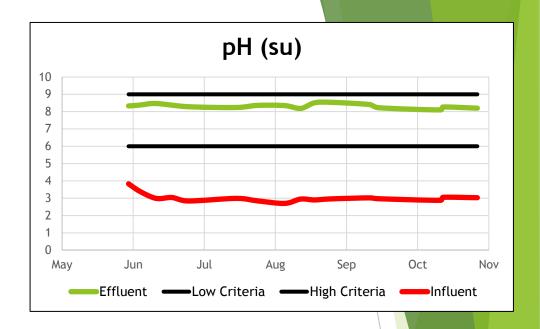

HDS Treatment System - Operations

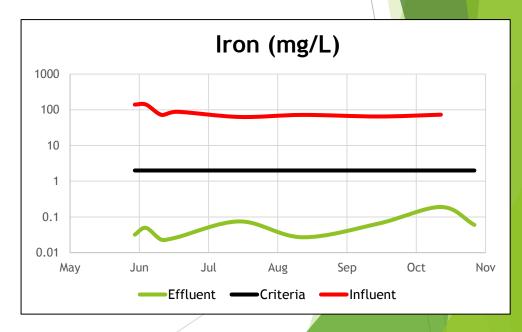
- May 27, 2014
 - Began treatment plant operations
- May 30, 2014
 - Began discharge to Leviathan Creek
- October 13, 2014
 - Began HDS Treatment Plant Capacity Testing
- October 17, 2014
 - HDS Treatment Plant Capacity Testing ended
- October 30, 2014
 - Capture of CUD and DS flows ended
- October 30, 2014
 - HDS Treatment Plant Discharge to Leviathan Creek ended
 - Pumped Pond 4 down to approximately 15 inches of water remaining

Channel Underdrain Historic Flow

HDS Treatment System Optimization

Continued system optimization to ensure safe and reliable operations


- Replaced lime sludge mix tank and reactor agitator blades
- Treatment system data storage upgrade
- ► Fire control panel & detectors
- Ran the plant in intermittent mode but for longer periods of time
- Storm water BMP improvements and maintenance
- Began engineering for battery backup low battery alarm
- Flocculant access stairs and drain lines
- GFEP for heat trace power

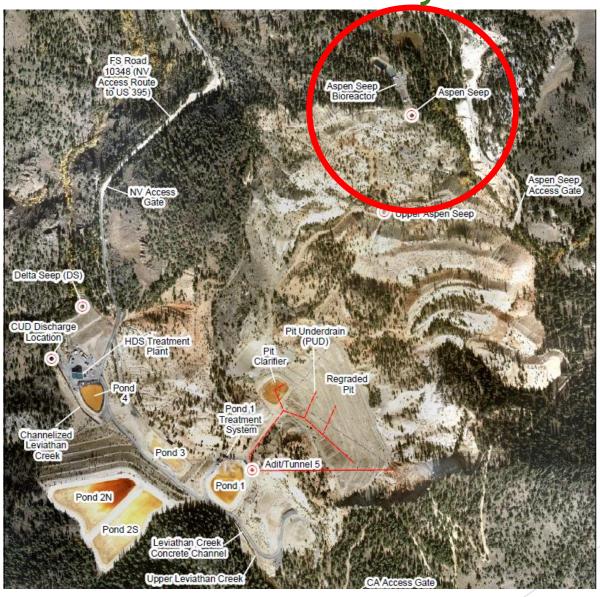


HDS Effluent

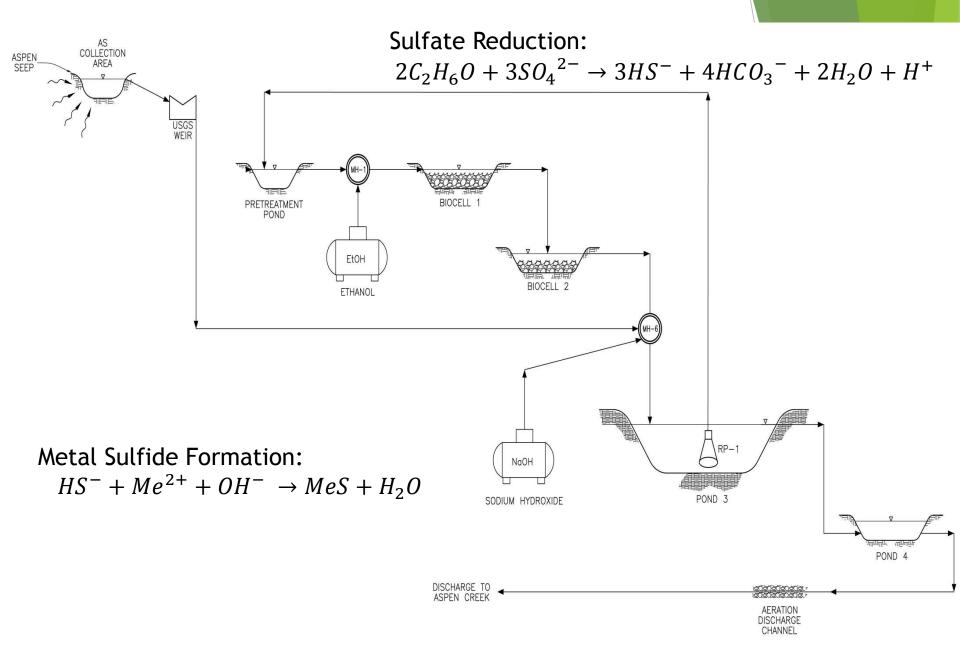
Analyte	Max	Criteria
Aluminum	0.410	4
Arsenic	0.0013	0.34
Cadmium	<0.001	0.009
Chromium	<0.002	0.97
Copper	0.0068	0.026
Iron	0.190	2
Lead	<0.0025	0.136
Nickel	0.053	0.84
Zinc	0.013	0.21

Note: Criteria is Discharge Daily Grab. All analytes are dissolved and in mg/L except pH, which is su

HDS Treatment System - Winterization


- Winterization of the HDS Treatment Plant and operation support area occurred from October 31, 2014 through November 13, 2014
- November 12, 2014 site office trailers were removed
- Consumables stored on-site to facilitate spring commissioning (Need to get from BAI)
 - 4,400 gal diesel
 - 7.2 tons lime (12 bags)
 - 45.4 kg flocculant

HDS Treatment System - Consumables Information

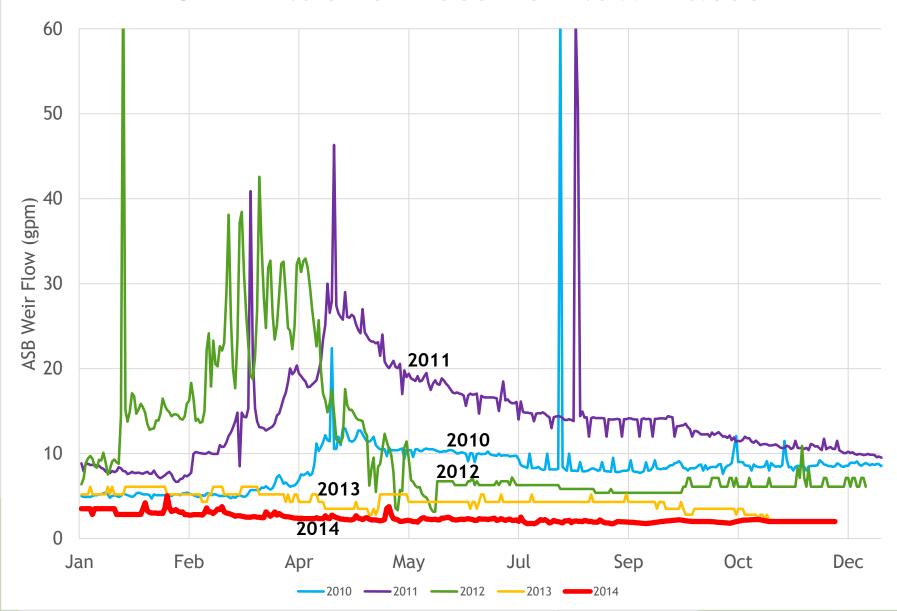

	Lime Utilization	Polymer Utilization	Sludge Generation				Energy Usage	Fuel Consumption
2014 Unit Rate	0.36 g/L	1.40 mg/L	3.0 ton/MG	3.4 CY/MG	LAS = 4,272 ARWS = 4,613 kWh/week	LAS = 51 ARWS = 53 Gal/Day		
2014 Total	5.7 tons	20 kg	11.21 tons	13 CY	123,142 kWh	10,801 gallons		

	Lime Utilization	Polymer Utilization	Slu Genei	_	Energy Usage	Fuel Consumption
2011 Unit Rate	0.78 g/L	6.43 mg/L	8.7 ton/MG	6.5 CY/MG	LAS = 6,500 ARWS = 5,500 kWh/week	LAS = 69 ARWS = 73 Gal/Day
2011 Total	42.5 tons	319 kg	153 tons	114 CY	155,850 kWh	15,346 gallons

ASB Treatment System

ASB Treatment System - Background

ASB Treatment System - Operations


LAS Operations

- Monthly visits for system O&M, cold weather system upsets, and compliance sampling
- Specialized training for Winter Access
- Detailed planning, preparation, and coordination
- Team used 4x4 vehicles to access the site during winter visits in 2014

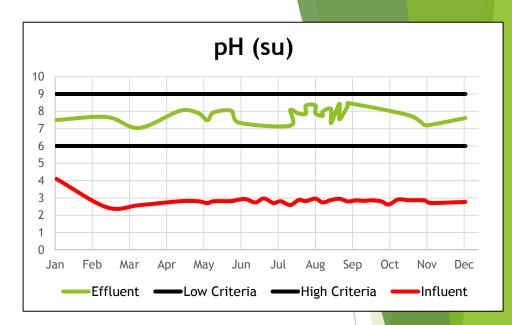
ARWS Operations

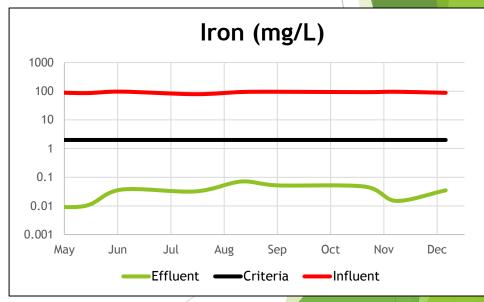
- Performed system O&M and improvements
- Monthly compliance sampling
- Solids management Transferred solids from Pond 3 to Pond 4

ASB Influent Historic Flow Rates

ASB Treatment System Maintenance Activities

- Biocell flushing
- Completion of maintenance on storm water BMPs in the Pond 4 and Aspen Seep areas
- Transfer of sludge from Pond 3 to Pond 4
 - No solids dewatering or off-site disposal in 2014
- ▶ Replacement of the ASB Human Machine Interface (HMI) computer
- Abandonment of the Bypass Line
- Fire Control Panel Upgrade
- Fuel Solenoid UPS backup
- Recirculation pump platform
- Generator Load Bank Testing





ASB Effluent

Analyte	Max	Criteria
Aluminum	0.230	4
Arsenic	0.005	0.34
Cadmium	<0.00025	0.009
Chromium	<0.0005	0.97
Copper	0.0021	0.026
Iron	0.082	2
Lead	<0.0005	0.136
Nickel	0.024	0.84
Zinc	0.019	0.21

Note: Criteria is Discharge Daily Grab. All analytes are dissolved and in mg/L except pH, which is su

ASB Treatment System - Performance

- Site improvements continue to increase system control and monitoring
- Indicator parameters demonstrate good bioreactor performance
 - Average effluent pH of 7.8
 - Average biocell ORP of -328 mV
 - Consistently high sulfate removal (400-1100 mg/L)
- Consistently met discharge criteria with no exceedances

ASB Treatment System - Consumables Information

	NaOH Utilization	Ethanol Utilization	Energy Usage	Propane Fuel Consumption
2014 Unit Rate	1.40 ml/L	0.72 ml/L	ARWS = 210 LAS = 250 kWh/Week	ARWS = 10 LAS = 15 Gal/Day
2014 Totals	1,733 Gal	890 Gal	12,330 kWh	4,903 Gallons

	NaOH Utilization	Ethanol Utilization	Energy Usage	Propane Fuel Consumption
2011 Unit Rate	1.15 ml/L	0.39 ml/L	ARWS = 230 LAS = 245 kWh/Week	ARWS = 11 LAS = 11 Gal/Day
2011 Totals	9,117 Gal	3075.2 Gal	12,500 kWh	4,000 Gallons

Questions

